

DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

Identifying Performance Advantaged Biobased Chemicals Utilizing Bioprivileged Molecules

DOE BETO BEEPS DE-EE0008492
Topic Area 3: Performance Advantaged Bioproducts (PABP)

3/10/21

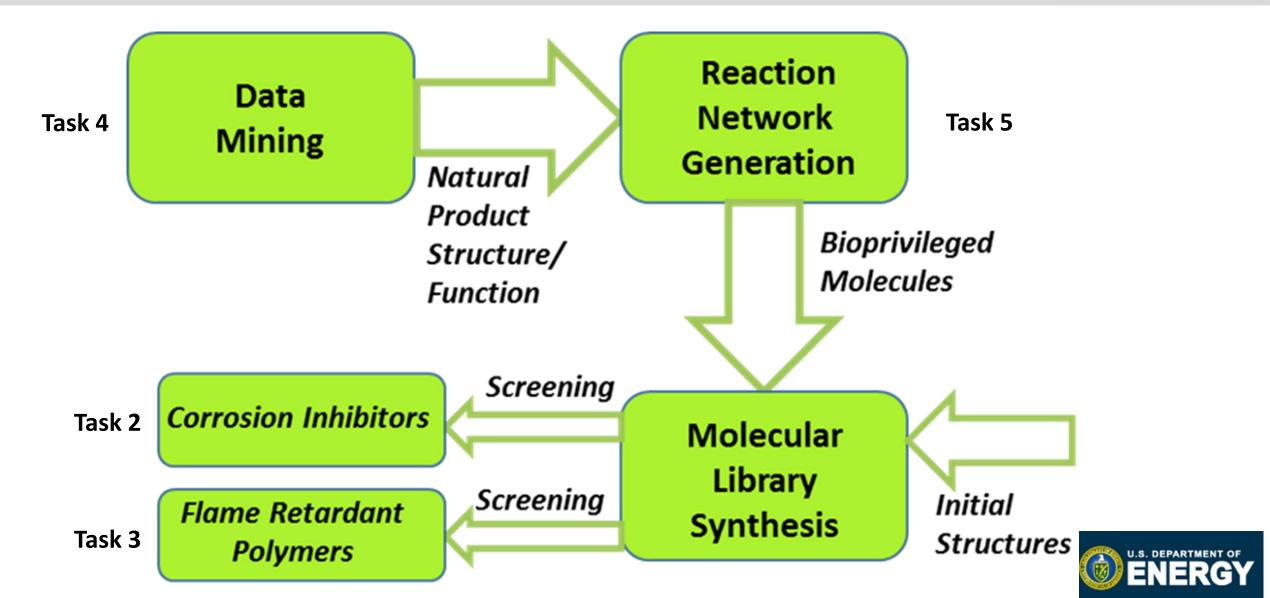
Performance Advantaged BioProducts

Brent H. Shanks

Iowa State University

Performance Advantaged Molecules

Challenges:


- Biobased chemicals developed primarily through retrosynthesis.
- Chemical structures available through biology nearly "infinite."
- Performance advantaged chemical structure in end use application difficult to predict a priori.
- No systematic strategies.

Opportunities:

- Bioprivileged molecules as synthetic platform species.
- Developments in computational methods (automated reaction network generation, data mining).
- Literature over the past 100 years contains many examples of molecule screening.
- Team had interesting set of initial structures for organic corrosion inhibitors and flame retardant polymers (nylon 6,6) and these areas are searching for new molecules.

Project Overview

Project Management

Overall Lead: B. Shanks (ISU)

Task 2: Identification of Novel Enhanced Organic Corrosion Inhibitors

- G. Kraus, B. Shanks (ISU)

Task 3: Identification of Novel Enhanced Flame Retardant Nylons

- J.P. Tessonnier, E. Cochran, B. Shanks (ISU)

Task 4: Construction and Application of Recurrent Neural Network Model

- J. Pfaendtner, D. Beck (UW)

Task 5: Construction and Application of Reaction Network Generation Framework

- L. Broadbelt (NU)

Technology Risks/Mitigation

- Screening protocol for novel molecules
 - Developing representative test
 - Sample size
- Computational strategy
 - Data mining has precedent
 - Reaction network generation builds from existing platform
 - Integration is unique
- Technology translation
 - Industrial connection

Approach

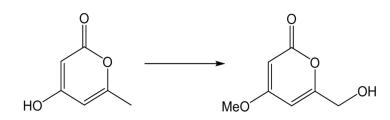
Phase 1: Project Component Development

- Initial synthetic "libraries" for each application
- Development of recurrent neural network (RNN) and reaction network generation (RNG) framework
- Second iteration of synthetic libraries for each application

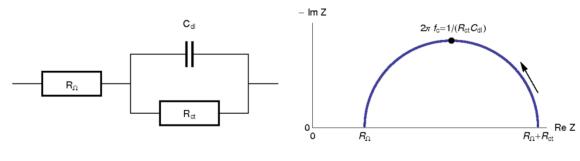
Phase 2: Integration of Project Components

- Passing structures from RRN to RNG for candidate molecule identification
- Synthesize libraries from candidate molecules

	Key Milestones & Deliverables
Year 1	 Identification of at least two novel corrosion inhibitors Nylon modified with 3-hexenedioic acid screened
Year 2	 Initial set of at least 5 novel molecules identified First set of data mined candidate molecules found
Year 3	 Data mined candidate molecules synthesized and tested - ≥5 novel molecules identified Integrated computational process developed for finding novel chemicals.


Initial Corrosion Inhibitor Set

$$4 \text{ NH}_3 + 6 \text{ H} + 6 \text{ H}_2\text{O}$$


Urotropin synthesis

CBiRC triacetic acid lactone

Opuntiol speculated as promising performance (Opuntia elatior)*

Electrochemical impedance spectroscopy screening

$$IE\% = \left(\frac{R_{\rm p} - R_{\rm po}}{R_{\rm p}}\right) \times 100$$

where R_p and R_{po} are the values of the polarisation resistance with and without inhibitor, respectively.

^{*}Loganayagi et al., ACS Sustainable Chemistry & Engineering (2014), 2, 606-613.

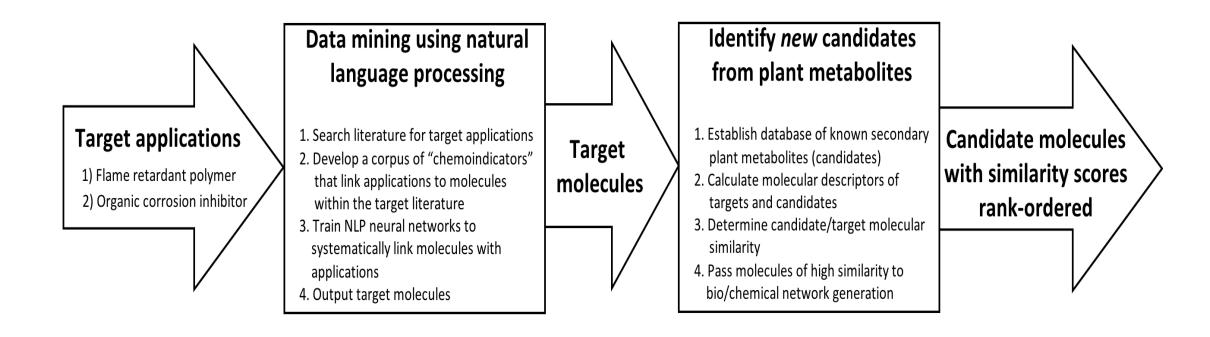
Initial Polymer Set

Conventional nylon 6,6: adipic acid + hexamethylenediamine

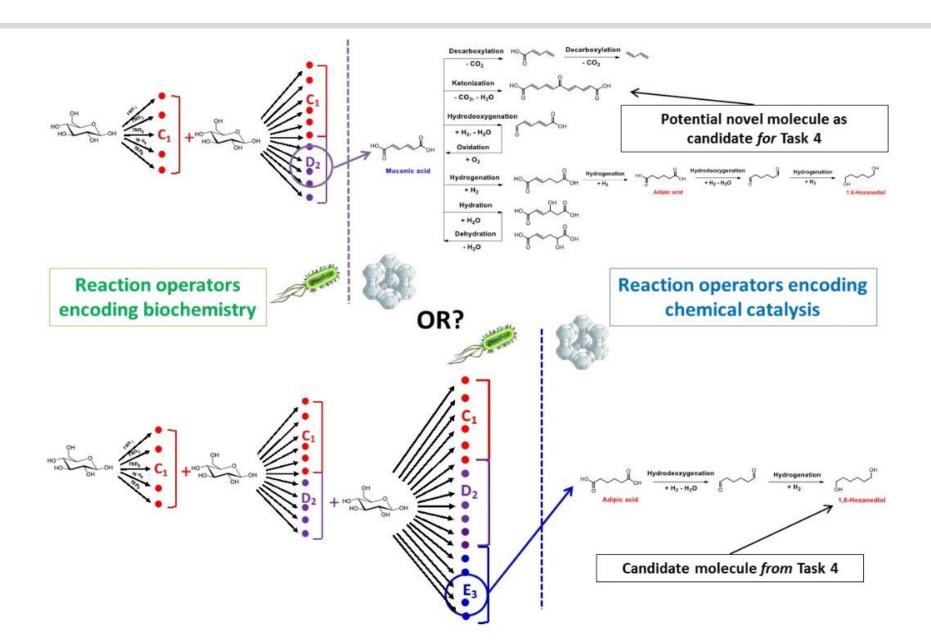
Flame retardant nylon 6,6: (adipic acid/3-hexenedioic acid) + hexamethylenediamine

Same polymerization procedure
Similar thermal and mechanical properties

UPA-x polymers formed from blends of **x** mol % AA and HAD (10 samples)

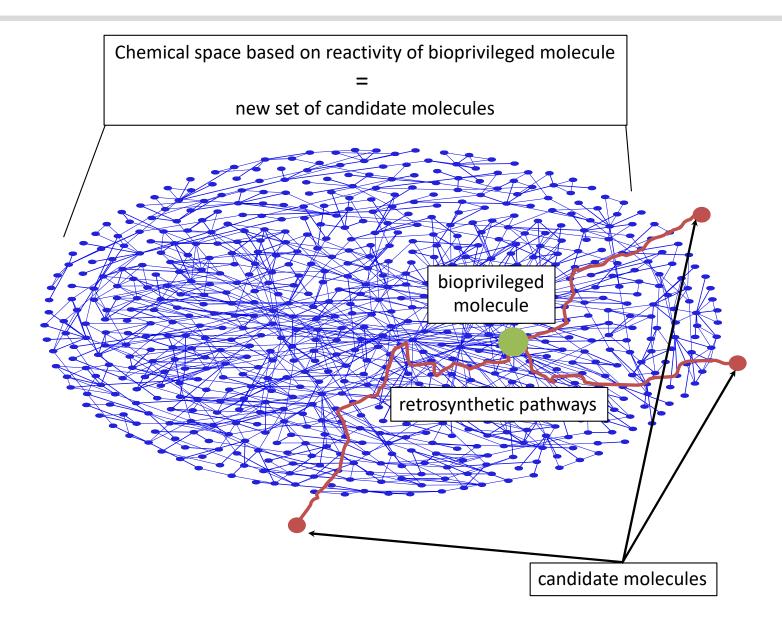

TGA Screening for Char Formation

Recurrent Neural Network Framework



- Concept: the "data mining + similarity" workflow will produce candidate molecules for the reaction network generator
 - Hypothesis: "target" molecules will have ideal properties for applications, can be readily synthetically upgraded from "candidates" due to chemical similarity

Reaction Network Generation Framework



Integration of Computational Tasks

Impact

Specific Product Impact: Performance and environmental impact

- Organic corrosion inhibitors to replace inorganics
- Flame retardant polymers without co-extruded molecules

Broader Impact:

- Value-added products that can help enable biorefineries
- Systematic strategy to identify and develop performance advantaged biobased chemicals

Corrosion Inhibitor Libraries

1st and 2nd Generation Libraries

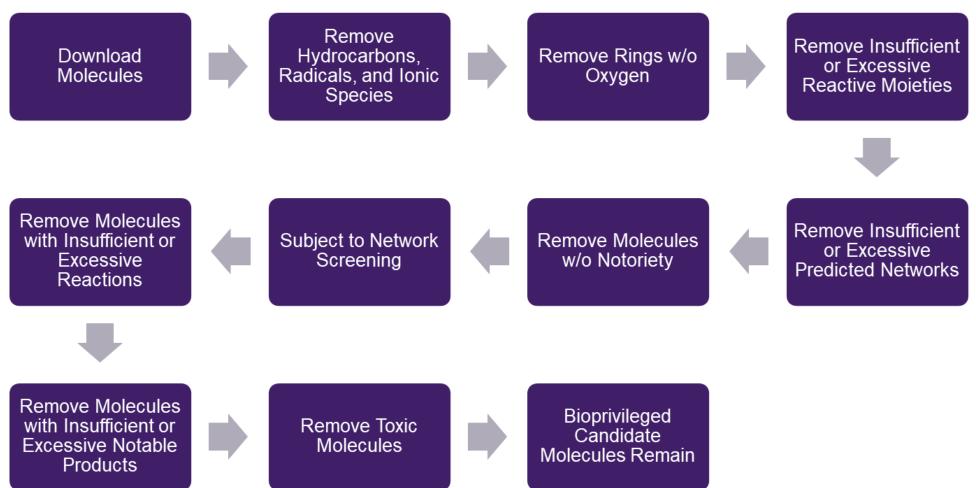
Corrosion Inhibitor Libraries – H₂SO₄

Label	4НС			o o o o o o o o o o o o o o o o o o o	o o o o o o o o o o o o o o o o o o o	S N	O O O O O O O O O O O O O O O O O O O	
Rct/Ohm	13	430	397	478	269	398	133	11
IE	-23%	96%	96%	97%	94%	96%	88%	-45%
Label	TAL	S A A A A A A A A A A A A A A A A A A A			NH S		NH S	S S
Rct/Ohm	16	77	73	126	44	306	415	229
IE	0%	79%	78%	87%	64%	95%	96%	93%
Label	Urotropin	HN SH	N SH	S _N SH	NH SH	N SH	T SH	
Rct/Ohm	23	18	19	99	71	145	270	
IE	30%	11%	16%	84%	77%	89%	94%	

Polymer: 3HDA Content Evaluated

- UPA-x polymers with blends of x mol % HDA replacement of AA

Sample	Anaerobic Char (%)	Aerobic Char (%)
Commercial	4.4 ± 0.8	25.1 ± 0.9
UPA-0	3.7 ± 1.3	26 ± 2
UPA-5	6.7, 6.7	30.6, 26.3
UPA-10	7.0, 8.3	29.9, 30.3
UPA-20	10.0, 8.9	28.6, 28.9
UPA-30	9.7, 10.5	30.2, 27.9


Sample	T _m (°C)	ΔH _m (J/g)	T _c (°C)	ΔH _c (J/g)	M _n (kDa)	Mw (kDa)	PDI
UPA-0	257.1	49.6	223.9	43.6	17.1	34.3	2.01
UPA-5	253.6	38.6	219.3	42.2	16.7	34.0	2.04
UPA-10	247.0	35.8	211.3	38.7	16.3	33.2	2.04
UPA-20	233.4	25.6	192.1	32.1	16.2	33.0	2.03

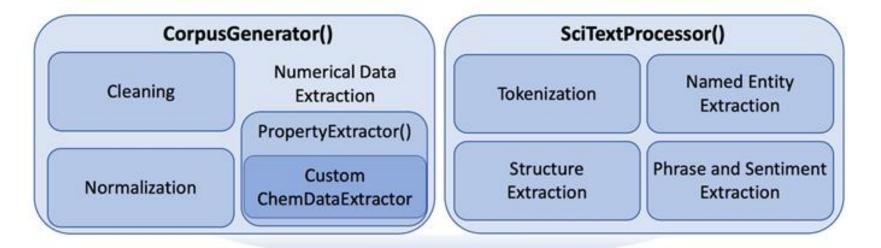
Annealed ISO 527-2 1BB bars, 7-10 replicates: Similar toughness, tensile modulus, max stress, mass strain

Workflow for Generic Candidate Molecules

Reaction Network Candidate Pruning

Starting Candidates

Formula	Compounds
$C_4H_xO_y$	5,706
$C_5H_xO_y$	13,271
$C_6H_xO_y$	35,542
$C_7H_xO_y$	57,043


Final Pruning

Step	C5	C6
Product Count	277	390
Product Rank	-	14
Thermodynamics	91	41
Known Products	4	34
Literature of Products	4	57
% Unknown	51	314
Patents/Literature	113	45
Toxicity	12	35
CANDIDATES	104	103

RNN for Corrosion Inhibitors

{'name': ['imidazoline', '2-imidazoline], 'role': 'product', 'inhibition_efficiency': {'value': '99.3', 'units': '%'}, 'LUMO': {'value': '6.048 – 6.720', 'units': 'eV'}, ... 'SMILES': 'N\1=C\NCC/1',

'sentiment_phrase': 'good corrosion inhibitor'}

Articles: ~100,000

Extracted molecules: ~22,000

Initial candidates: 60*

* High similarity scores

Future Work – Corrosion Inhibitors

- Additional characterizations with best candidates
 - Electron microscopy
 - Quantum chemical calculations
 - Molecular dynamic simulations
 - Adsorption isotherm studies
- Chemical structures suggested by computational work
- Technology translation
 - Connect with corrosion inhibitor companies
 - Understand commercial requirements for further development of identified organic corrosion inhibitors

Future Work – Flame Retardant Nylon

- Additional testing with best polymer candidates
 - Polymer physical properties (thermal <20 mg, mechanical ~10 g)
 - Microcalorimetry screening
 - Flammability testing
- Initial tethered chemical structures
- Tethered chemical structures suggested by computational work
- Technology translation
 - Connect with polymer companies
 - Establish plan for further development of identified flame retardant nylons.

Summary

- 13 high performing organic corrosion inhibitors identified
- Improved charring "nylon 6,6" synthesized with good physical properties
- RNN and RNG computational frameworks established
- First set of prospective corrosion inhibitors handed off from RNN to RNG
- Key future work
 - Proposed biopriviledged molecules for corrosion inhibitor library generation
 - Second test of computational framework for tethered moieties to create flame retardant nylon polymers

Quad Chart Overview

Timeline

- 10/1/18
- 12/31/21

	FY20 Costed	Total Award
DOE Funding	\$923,061	\$2,500,000
Project Cost Share	\$326,676	\$625,000

Project Goal

Advance two technological areas; a) novel molecules with improved performance in the end use application of organic corrosion inhibitors and flame retardant nylon polymers and b) development of a systematic process for identifying biomass-derived molecules with improved performance in end use applications. Use the two application areas for aiding the construction of a broader systematic process for novel molecule identification.

End of Project Milestones

- Data mined candidate molecules synthesized and tested - ≥ 5 novel molecules identified with >10% performance improvement
- Integrated computational process developed for finding novel chemicals.

Project Partners

- Northwestern University
- University of Washington

Funding Mechanism

FOA-0001916 Bioenergy Engineering for Products Synthesis (BEEPS) - 2018

Topic Area 3: Performance Advantaged Bioproducts (PABP)

Thank You

Responses to Previous Reviewers' Comments

- If your project has been peer reviewed previously, address 1-3 significant questions/criticisms from the previous reviewers' comments which you have since addressed
- Also provide highlights from any Go/No-Go Reviews

Note: This slide is for the use of the Peer Reviewers only – it is not to be presented as part of your oral presentation. These Additional Slides will be included in the copy of your presentation that will be made available to the Reviewers.

Publications, Patents, Presentations, Awards, and Commercialization

- Carraher, J.M., Carter, P., Rao, R.G., Forrester, M.J., Pfennig, T., Shanks, B.H., Cochran, E.W., and Tessonnier, J.-P., "Solvent-driven isomerization of cis,cis-muconic acid for the production of specialty and performance-advantaged cyclic biobased monomers," Green Chemistry, 22, 6444-6454 (2020)
- Dollar, O., Joshi, N., Beck, D.A.C., and Pfaendtner, J. "Giving Attention to Generative VAE Models for *de novo* Molecular Design," *Nature Communications*, submitted (2020)
- Lopez, L.M., Shanks, B.H., and Broadbelt, L.J., "Identification of Bioprivileged Molecules: Expansion of a Computational Approach to Broader Molecular Space," *Molecular Systems Design & Engineering*, submitted (2021)
- Abdolmohammadi, S., Forrester, M.J., Lin, F.-Y., Gansebom, D., Nelson, J.W., Matthiesen, J.E., Hernández, N., Shanks, B.H., Tessonnier, J.-P., and Cochran, E.W., "Analysis of the Amorphous and Interphase Influence of Comonomer Loading on Polymer Properties Towards Forwarding Bioadvantaged Copolyamides," *Green Chemistry*, submitted (2021).
- Tessonnier, J.P., Shanks, B.H., Cochran, E.W., Hadel, J.E., Dell'Anna, M.N. and Carter, P., "Isomerization of Cyclohexenedicarboxylic Acid and its Derivatives," United States Patent application, 2020.
- Shanks, B.H., Kraus, G.A., Bradley, W., Huo, J. and Podolak, K., "Heteroaryl-Thio-Substituted Pyrones," United States Patent application, 2020.
- "Developing Performance-Advantaged Chemicals Utilizing Bioprivileged Molecules: Organic Corrosion Inhibitors" with Huo, J., Bradley, W., Podolak, K., Ryan, B., Roling, L.K., Kraus, G.A., Annual Meeting, American Institute of Chemical Engineers, virtual, November, 2020.

